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Summary. The approach to linkage equilibrium of a 
locus linked to the locus determining gametophytic 
self-incompatibility (S) is considered. For the simplest 
case of three alleles at the S locus and two at the linked 
locus it is necessary to consider 3 measures of linkage 
disequilibrium. These are found to approach their 
equilibrium value of zero in one of three ways: 1) 
steadily declining to zero; 2) oscillating as decline 
proceeds; 3) a combination: 2) followed by 1). Linkage 
equilibrium may be established before genotype fre- 
quencies reach their expectation under random cross- 
ing. Earlier studies (Li 1951; Moran 1962) of the 
approach to S allele equilibrium have been based on 
the assumption that all types of pollen take part in 
fertilizations equally frequently. Such an assumption 
leads to simpler expressions for changes in S gene fre- 
quencies but is extremely unrealistic and, in particular, 
leads to a different rate of approach to equilibrium 
from the more comprehensive model. It is shown that 
even in the absence of selection it is not possible to 
predict the equilibrium gene frequency of a linked 
locus until S allele equilibrium is reached. This fre- 
quency may be either higher or lower than that cal- 
culated from a gene count in the starting genotype 
pool. However, these two gene frequencies may stabi- 
lize long before linkage equilibrium is achieved. An 
examination of selection against one genotype at the 
linked locus is undertaken. If linkage is complete, 
lethality can be less effective at reducing the gene fre- 
quency than is less intense selection (in only a few 
generations of selection). Here too linkage equilibrium 
may be established with selection still effective in 
bringing about a decline in gene frequency. An exami- 
nation of the analysis and conclusions of Rasmuson 
(1980) shows that because these were based on the 
inadequate formulae previously discussed and exclude 

phenomena discussed above, they are misleading. The 
possibility of a gametophytic self-incompatibility sys- 
tem providing a sufficient condition for the sheltering 
of lethals in the absence of the condition of complete 
linkage to the S locus (r = 0) is shown to be unlikely. 
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Introduction 

In random mating populations in the absence of selec- 
tion, the joint genotypes at linked loci ultimately reach 
frequencies expected on the basis of independence, i.e. 
loci appear unassociated. In population-genetical stud- 
ies, it is sometimes useful to know the number of 
generations required to approach this equilibrium con- 
figuration to any given extent. For two autosomal loci 
this is a relatively simple problem and for X-linked loci 
the problem, although more complex, has also been 
solved (Bennett et al. 1965). In this paper we look at 
the rate of approach to linkage equilibrium of two 
linked loci, one of which is a locus which determines 
gametophytic self-incompatibility (S), where all geno- 
types are of equal fitness. The analysis is extended to 
include differential fitness of the genotypes at the 
linked locus with a view to assessing the rate at which 
incompatibility systems might be expected to accumu- 
late linked deleterious, possibly lethal genes. 

Muller (1914) first demonstrated balanced systems of 
lethal factors and since that time a number of writers have 
taken the view that enforced heterozygosity is sufficient to 
explain the accumulation of lethals in the sheltered chromo- 



somes. This can be seen in a very simple form if we compare 
the equilibrium frequencies of lethal recessives for autosomal 
and X-linked genes: if the rate of mutation to the lethal allele 
is /t, the equilibrium frequencies are /t and 3/~ for the 
autosomal and X-linked cases, respectively. The higher auto- 
somal frequency occurs because two doses of the gene are 
necessary for lethality, whereas in the heterogametic sex only 
one dose is needed. 

It has long been suggested that genetical systems in plants 
(which may vary from complete self-fertilization to obligate 
outcrossing) determine the amount of heterozygosity found in 
natural populations of plants (Darlington 1958). However, 
Fisher (1935) demonstrated that, by itself, enforced hetero- 
zygosis does not shelter lethal mutations in such a way as to 
explain their accumulation from this cause alone. Further, 
Strobeck (1980) considering a system of heteromorphic self- 
incompatibility showed that the mating system affects the 
proportion of heterozygous individuals only at those loci 
which are directly adjacent to the S locus, and Ellstrand 
(1978) observed that the amount of variation maintained in 
populations of ring-forming species of Oenothera (i.e. those 
with balanced lethal factors), is not much different from non- 
ring-forming species. 

We compare the rate of approach to equi l ibr ium 
under the restrictive condition imposed by the self- 
compatibil i ty system with the situation of X-linkage 
which might be regarded as a special (non-reciprocal) 
case of a self-incompatibility system. As with the X- 
linked case, measures of linkage disequi l ibr ium can 
only be determined in terms of genotypic frequencies 
not the simpler commonly used form involving haplo- 
type frequencies appropriate for autosomal loci. 

This approach to the problem, deemed necessary to 
give a true representation of a populat ion of plants, 
leads to results involving the approach to S allele 
equi l ibr ium different from those previously described 
by Li (1951) and Moran (1962) and used by Rasmuson 
(1980). A re-evaluation of these results is given. 

Table 1. Legitimate crosses and their progeny with three S 
alleles 

Male parent 

St $2 Sj $3 $2S3 
! 1 1 l 

S I S 2  - - ~ S I S 3 - ~ $ 2 S  3 ~ S I S 3 ~ $ 2 S  3 

1 I _ i 1 Female Si $3 -~Si $2 ~$2S3 ~$I $2 gS2Ss 
I 1 I I parent $2S3 -fSj $2-~$1S3 7Si S2gStS3 - 
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Methods 

Self-incompatibility may be defined as the failure of self or 
cross pollination by reason of genetical similarity within an 
otherwise freely interbreeding group (Darlington and Mather 
1949). The case considered here is that of gametophytically 
determined self-incompatibility in which pollen tube growth 
in the stylar tissue is controlled by the incompatibility genes in 
the pollen. Pollen grains are unable to grow in styles which 
possess the same gene as that carried by the pollen, i.e. in- 
dividuals must always be heterozygous at the S locus. A mini- 
mum of three alleles is necessary for the system to survive, 
and with three alleles $1, $2, $3 at the incompatibility locus, 
three genotypes S t $2, $1 $3 and $2S3 will exist in the popula- 
tion. 

Legitimate crosses and the progeny they yield are set out 
in Table 1. Considering two alleles AIA 2 at the linked locus 
leads to 12 possible genotypes (Table2) which can cross 
according to the constraints outlined in Table 1. 

Linkage disequilibrium is defined as the difference in 
genotypic frequency between the two classes of double hetero- 
zygotes. Thus three measures of linkage disequilibrium are 
necessary to describe this, the simplest, case involving a game- 
tophytic self-incompatibility system. 

These are 

SlAt SjA2 
D~ = Y2- Ys: 

$2A2 SzAI 
SIAl SjA2 

D2 = Y4- Y7: 
$3A2 S3AI 

$2A2 $2A1 
D3=yl l -y j0 :  

S3AI $3A2 

In order to obtain these measures it is necessary to consider 
the 12 x 12 matrix of matings involving the 12 genotypes and 
collect up the 36 terms which contribute to each new geno- 
type frequency in each generation. An example, the expecta- 

S1AI 
tion for the genotype S---~-' is given in Table 3. 

It is unfortunate that this set of equations does not lead to 
simple expressions for D i in each generation so that only 
numerical solutions may be obtained by repeated iteration. 
(We have attempted simplification by the use of the 
MACSYMA algebraic computer package but no useful results 
were obtained,) 

Many different starting frequencies for the 12 genotypes 
were considered and similar patterns emerged. The ones 
described here in detail are i) the same for the three S geno- 
types as those considered by Li (1951) and ii) sets which 
satisfy the conditions specified by Rasmuson (1980), so that 
comparisons may be presented in a later section. 

Conditions i) were examined for recombination frequen- 
cies r=0 ,  0.01, 0.1, 0.2, 0.3, 0.4, 0.5 and fitness values of s=  1, 
0.9, 0.5 and 0 for the A1A 1 homozygote at the linked locus and 
conditions ii) at r = 0 and fitness either 0 or 0.5. 

Table 2. Genotypes possible with 2 alleles linked to the S locus 

SIAl SiAl SiAl SIAl SIA2 StA2 SIA2 $1A2 $2A1 S2AI $2A2 $2A2 
Genotype 

S2A I $2A2 S3A 1 $3A2 S2A I 32A2 S3A 1 33A2 S3AI $3A2 S3AI 33A2 

Frequency Yl Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Yto Yll Yz2 
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SIAj 
Table 3. The frequency of 
crossing $2A1 

(Yl) after one generation of 

-~- [YlY3 + 2y3Y9+ YlY9] 

1 
+~-[Y2Y3+ 2y3yH + YlY7+ 2y7Y9+YsY9+ YlYH] 

( 1  - r) 
+ 2 [y3Ys+2y3ylO+yly4+2y4Y9+y2yg+ylylo]  

r(1 - r )  
+ 2 [Y2Y4 + 2y4Ylt + YsY7 + 2y7Y10 + YsYl0 + Y2yll] 

(1 -02  
+ 2 [Y4Y5 + 2y4Yl0 + Y2Yl0] 

+ r2[y2Y7 + 2y7Y11 + YsYll] Yi 
J~i=l 

Results 

Approach to linkage equilibrium in the absence 
of selection 

As noted by Li (1951), the frequencies of the S genes 
approach their equilibrium values of 1/3 in an oscillat- 
ing fashion. This oscillating pattern is also observed in 
the approach to equilibrium frequencies of X-linked 
genes. However, in the case considered here, the D 
values may also oscillate, either giving a "saw tooth" 
approach to equilibrium values of zero without change 
in sign or oscillating in sign. Such behaviour was not 
found in the X-linked cases studied (Bennett et al. 
1965). These oscillations are more likely to persist for 
larger values of the recombination frequency (r); for 
small values of r they tend to cease at S allele equilib- 
rium, a condition which is always reached after rela- 
tively few (4-8)  generations. Table 4 gives examples of 
these points. 

For a given set of conditions at least one pair of the 
D values tend to be highly correlated. This correlation 
is greater for increasing values of r and may extend to 
all three D values. 

We have found that it is not possible to predict the 
equilibrium frequencies of the genes at the linked 
locus from a gene count in the genotypes of the starting 
population. Although the equilibrium gene frequency 
is determined after relatively few generations of mating 
(at about the same time as S allele equilibrium), its 
value for a given set of starting genotype frequencies 
differs for different values of r. It may either increase 
or decrease with r and may be more or less than the 

original value obtained from a gene count. Figure 1 
illustrates these points. 

The case where r = 0.5 reflects the behaviour of any 
gene in the genome unaffected by the constraints of the 
incompatibility system; under these conditions linkage 
equilibrium and S allele equilibrium are coincident 
and rapid: always in less than 10 generations. 

For the case r = 0 a consideration of linkage equi- 
librium is uninformative as in the absence of recom- 
bination changes in gene arrangement can only occur 
through gene conversion, mutation or other rare pro- 
cesses. In this case the population reaches a steady 
state in which large values for the D's may persist. 
These D's stabilize at S allele equilibrium. Table 5 
illustrates these points. 

Selection 

Rasmuson (1980) has held that a tightly linked delete- 
rious gene cannot be eliminated from a population in 
the absence of mutation. This is only true for the case 
r =  0, not for r > 0. The case r = 0, s =  1 results in a 
stable state with the deleterious gene still present in 
heterozygotes, i.e. in such a case the lethal is sheltered. 
This stable state coincides with S allele equilibrium. 

However, with r = 0.01, s = 1.0 a deleterious gene 
can be eliminated as selection is still effective after S 
allele equilibrium and also after linkage equilibrium. 
See Figs. 2 and 3 for illustrations. 

In general, after linkage equilibrium is reached the 
approach of the frequency of A l to zero should be the 
same as the standard infinite population case, i.e. 

- s q 2 ( 1 - q ) .  This proves to be the case. Thus, 
Aq 1 - s q  2 

in a population with a self-incompatibility system, 
once the population is in linkage equilibrium the effect 
of selection is independent of that system. This also 
militates against the notion of sheltering of lethals by 
the incompatibility system per se if r > 0. If selection is 
imposed on a population at linkage equilibrium, the 
changes in gene frequency as a result of selection are 
independent of the recombination fraction between the 
selected locus and the S locus. 

Rasmuson also claimed that when selection is 
relaxed the frequency of aa (in this case AIA1) in- 
creases rapidly. We have shown this not to be the case; 
even if selection is relaxed before S allele equilibrium 
is reached the population soon stabilizes again. See 
Table 6. 

Sheltering of lethals 

Consider a population which has reached S allele 
equilibrium and suppose that all chromosomes carry 



Table4. Approach to equilibrium of Yl, DI, D2, D3, Al, Si from the initial set of frequencies 
(Dx 103) 
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1) 0.2 0.3 0.04 0.08 0.1 0.2 0.03 0.01 0.01 0.01 0.01 0.01 
to the equilibrium set of frequencies 
0.09371 0.08303 0.09371 0.08303 0.08303 0.07356 
0.08303 0.07356 0.09371 0.08303 0.08303 0.07356 with r =  0.4 s = 0.0 

Gen. Yl Di D2 D3 AI Si 

1 0.07572 -32.45192 3.60577 35.45673 0.52855 0.27885 
2 0.09698 -9.60235 -8.03049 2.61858 0.53026 0.34515 
3 0.09283 -3.67518 -0.13398 3.40702 0.53022 0.33028 
4 0.09386 -0.96509 -0.72923 0.25490 0.53023 0.33409 
5 0.09367 -0.36616 -0.02043 0.34364 0.53023 0.33314 
6 0.09372 -0.09691 -0.07208 0.02508 0.53023 0.33338 
7 0.09371 -0.03657 -0.00212 0.03442 0.53023 0.33332 
8 0.09371 -0.00970 -0.00720 0.00250 0.53023 0.33334 
9 0.09371 -0.00366 -0.00021 0.00344 0.53023 0.33333 

10 0.09371 -0.00097 -0.00072 0.00025 0.53023 0.33333 
11 0.09371 -0.00037 -0.00002 0.00034 0.53023 0.33333 
12 0.09371 -0.00010 -0.00007 0.00003 0.53023 0.33333 
13 0.09371 -0.00004 0.00000 0.00003 0.53023 0.33333 
14 0.09371 -0.00001 -0.00001 0.00000 0.53023 0.33333 
15 0.09371 0.00000 0.00000 0.00000 0.53023 0.33333 

2) 0.2 0.3 0.04 0.08 0.1 0.2 0.03 0.01 0.01 0.01 0.01 0.01 
to the equilibrium set of frequencies 
0.09498 0.08295 0.09498 0.08295 0.08295 0.07245 
0.08295 0.07245 0.09498 0.08295 0.08295 0.07245 with r = 0.45 s = 0.0 

Gen. Yl Dt D2 D3 Al Sl 

1 0.07531 -26.14183 10.36659 36.20793 0.53320 0.27885 
2 0.09908 -2.97655 -2.88539 0.58789 0.53379 0.34515 
3 0.09384 -1.24589 0.51133 1.72833 0.53379 0.33028 
4 0.09524 -0.07660 -0.15272 -0.07340 0.53379 0.33409 
5 0.09491 -0.05735 0.03426 0.09148 0.53379 0.33314 
6 0.09499 -0.00029 -0.00969 -0.00939 0.53379 0.33338 
7 0.09497 -0.00285 0.00232 0.00516 0.53379 0.33332 
8 0.09498 0.00016 -0.00063 -0.00079 0.53379 0.33334 
9 0.09498 -0.00015 0.00016 0.00031 0.53379 0.33333 

10 0.09498 0.00002 -0.00004 -0.00006 0.53379 0.33333 
11 0.09498 -0.00001 0.00001 0.00002 0.53379 0.33333 
12 0.09498 0.00000 0.00000 0.00000 0.53379 0.33333 

3) 0.0005 0.0 0.0 0.0 0.0 0.0 0.0 0.49975 0.0 0.0 
to the equilibrial set of frequencies 
0.0 0.00034 0.0 0.00034 0.00034 0.33265 

0.0 0.49975 

0.00032 0.33267 0.0 0.00034 0.00032 0.33267 with r=0 .1  s =  0.0 

Gen. Yt Dl D2 D3 A1 $1 

1 0.0 0.0 -0.74888 -0.74888 
2 0.0 0.0 -0.18002 -0.18002 
3 0.0 0.0 -0.41971 -0.41971 
4 0.0 0.0 -0.22492 -0.22492 
5 0.0 0.0 -0.25352 -0.25352 
6 0.0 0.0 -0.18481 -0.18481 
7 0.0 0.0 -0.17076 -0.17076 
8 0.0 0.0 -0.13795 -0.13795 
9 0.0 0.0 -0.12004 -0.12004 

10 0.0 0.0 -0.10019 -0.10019 
11 0.0 0.0 -0.08559 -0.0.8559 
12 0.0 0.0 - 0.07217 - 0.07217 
13 0.0 0.0 -0.06130 -0.06130 

0.00100 
0.00098 
0.00101 
0.00100 
0.00100 
0.00100 
0.00100 
0.00100 
0.00100 
0.00100 
0.00100 
0.00100 
0.00100 

continued 

0.37488 
0.32502 
0.33552 
0.33279 
0.33347 
0.33330 
0.33334 
0.33333 
0.33333 
0.33333 
0.33333 
0.33333 
0.33333 

overleaf 
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Table 4 (continued) 

Gen. Yl D[ D2 D3 A[ SI 

14 0.0 0.0 -0.05186 -0.05186 0.00100 
15 0.0 0.0 -0.04397 -0.04397 0.00100 
16 0.0 0.0 -0.03723 -0.03723 0.00100 
17 0.0 0.0 -0.03155 -0.03155 0.00100 
18 0.0 0.0 -0.02671 -0.02672 0.00100 
19 0.0 0.0 -0.02264 -0.02264 0.00100 
20 0.0 0.0 -0.01918 -0.01918 0.00100 

0.33333 
0.33333 
0.33333 
0.33333 
0.33333 
0.33333 
0.33333 

0.535 

0 .530  

0.525 

0 .520  

0.515 

0 .510  

O. 505 

a 
0.500 

o.0o ,,o~ o . t ,  o.2~ o.s~ o.,~ o.,~ o.s~ 0.6, 

0.00580  

0 .00552 

0.09544 

0.095~6 

0.09528 

0. 09530 

0.09512 

0.09504 

o.o0 o.od o. 1~ o.2i o.91 o .~  o.,e 0.ss 

Fig. 1. Relationship between equilibrium fre- 
b quency at the linked locus and recombination fre- 

quency between loci (a) initial gene frequency 
o. s, = 0.515 (b) initial gene frequency = 0.094 
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1) 0.09629 0.08287 0.09629 0.08287 0.08287 0.07131 
0.08287 0.07131 0.09629 0.08287 0.08287 0.07131 with r = 0.5 s = 0.0 

Gen. Yl DI D2 D3 Al Sl 

1 0.07482 - 19.83173 17.12740 36.95913 0.53786 0.27885 
2 0.10152 2.74162 1.27051 - 1.47111 0.53748 0.34515 
3 0.09498 -0.27916 -0.05789 0.22128 0.53748 0.34515 
4 0.09662 0.03626 0.01002 -0.02624 0.53747 0.33409 
5 0.09621 -0.00449 -0.00116 0.00332 0.53747 0.33314 
6 0.09631 0.00056 0.00015 -0.00041 0.53747 0.33338 
7 0.09629 -0.00007 -0.00002 0.00005 0.53747 0.33332 
8 0.09629 0.00001 0.00000 -0.00001 0.53747 0.33334 
9 0.09629 0.00000 0.00000 0.00000 0.53747 0.33333 

2) 0.08776 0.13734 0.10152 0.12357 0.4220 0.00604 
0.04882 0.05942 0.05861 0.07134 0.09172 0.11165 with r=0 .0  s=0.0  

Gen. Yl Di D2 D3 Ai S1 

1 0.07632 -82.93269 -50.48077 29.44712 0.49129 0.27885 
2 0.08795 -95.28352 -84.80296 17.84504 0.50809 0.34515 
3 0.08883 -95.31376 -70.01738 21.31175 0.50464 0.33028 
4 0,08691 -94.21442 -77.04496 20.01021 0.50556 0.33409 
5 0.08825 -95.68008 -73.63499 20.54234 0.50534 0.33314 
6 0.08749 -94.84604 -75.31370 20.30498 0.50540 0.33338 
7 0.08789 -95.28872 -74.48078 20.41639 0.50538 0.33332 
8 0.08769 -95.06101 -74.89561 20.36249 0.50539 0.33334 
9 0.08779 -95.17646 -74.68860 20.38899 0.50539 0.33333 

10 0.08774 -95.11834 -74.79200 20.37585 0.50538 0.33333 
11 0.08777 -95.14750 -74.74033 20.38239 0.50538 0.33333 
12 0.08775 -95.13289 -74.76616 20.37913 0.50538 0.33333 
13 0.08776 -95.14020 -74.75324 20.38076 0.50538 0.33333 
14 0.08776 -95.13655 -74.75970 20.37995 0.50538 0.33333 
15 0.08776 -95.13837 -74.75647 20.38035 0.50538 0.33333 
16 0.08776 -95.13746 -74.75809 20.38015 0.50538 0.33333 
17 0.08776 -95.13792 -74.75728 20,38025 0.50538 0.33333 
18 0.08776 -95.13769 -74.75768 20.38020 0.50538 0.33333 
19 0.08776 -95.13780 -74.75748 20.38023 0.50538 0.33333 
20 0.08776 -95.13775 -74.75758 20.38021 0.50538 0.33333 

A 2 at the closely l inked locus. Suppose further that 
pollen carrying SiAl drifts into the populat ion.  The 
AIA 1 genotype is lethal. 

If there is a 5% contr ibut ion to the pollen pool of  
S1A l we find that the popula t ion  reaches a new equi- 
l ib r ium with the frequency o f  At slightly less than 5% 
depending on the recombinat ion  frequency between 
the A and S loci (Table 7). If  this new haplotype  is 
introduced at a very high frequency, e.g. 0.45, the new 
equi l ibr ium frequency of  Al is much lower, 0.32, in the 
case where r = 0; this value declines rapidly  as r in- 
creases (Table 7). Thus unless the condi t ion r = 0 is 
deemed realistic it seems unlikely that a gametophyt ic  
self- incompat ibi l i ty  system would provide  a sufficient 
condit ion for the sheltering of  l inked lethal genes. 

This f inding is substant iated by results o f  small 
s imulated populat ions  of  gametophyt ica l ly  self-incom- 

pat ible  plants (see Mayo 1983, for references). How- 
ever, it does not suppor t  ei ther the suggestion that  in 
small populat ions different  outbreeding mechanisms 
can lead to different  frequencies of  recessive lethals as 
discussed for example  by Mayo (1981) or the case 

argued by Rasmuson (t980). Rasmuson argues that  
with repeated introduct ion of  new S genes, each of  
which is completely l inked to a lethal gene an increas- 
ing propor t ion of  the popula t ion  will become homo- 
zygous for this gene. These new haplotypes can only 
arise by rare processes such as mutat ion,  as ment ioned 
before, and indeed they would seem to be equivalent  to 
new S genes rather  than S1AI haplotypes,  a different  
case from that proposed by  Rasmuson. In fact the 
introduction of  more S alleles l inked to the favourable  
allele (A:) would be expected to hasten the decline of  
the frequency of  A~ at a rate propor t ional  to the 
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0 . 1 0 5  

0.090 

0 . 0 7 5  

O. O6O 

O. 045 

O. 030 

0.015 

O. 000 

0.00 o. oi o. l i  o.2i o.sl o.,a o. , i  o. se 

E 

0 . 6 4  

Fig. 2. Relationship between the frequency of a 
deleterious allele at the linked locus and recom- 
binations frequency between loci 

O. 5447 

O. 5528 

O. 4805 

O. $684 

O. 2"/85 �9 

O. 1842 a 

0 , ' 0 9 2 1  mmm 

Q. 0000 

O. O0 S$. 7-'; 

�9 m m �9 �9 �9 �9 �9 

57.44 -l-al.2~ 134.oi lee.e4 202.41 2..~i  265.,/ 

Fig. 3. Change over time in frequency of a 
lethal gene linked to the self-incompatibility 
locus 

number of S genes so linked even in the case of com- 
plete linkage. 

Comparison with other previous investigations 

Li (1951) considers a population in which there are 3 
incompatibility genotypes SISz, $1S3, $2S3 in arbi- 
trary proportions. He deduces simple and elegant 
equations for the change in gene frequency of the S 
alleles between generations and later extends the argu- 
ment to k alleles arriving at expressions originally given 

by Wright (1939): 

q~= ( k -  2) q l ( 1 -  ql) 

k - 3 + 2 q  

and 

A q =  
q(1 - k q )  

k - 3 + 2 q  

These expressions require the assumption that all 
types of pollen are equally numerous, which may be 
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appropriate for large numbers of S alleles. If, however, 
one imagines that pollen can drift into a population 
from new sources it will not initially do so at the same 
frequency as existing types which may themselves vary 
in frequency from generation to generation depending 
on the frequency of plants with each S allele. 

A more complete consideration of the situation 
requires that both the frequency of the various female 
parents Sij and the pollen types be taken into account. 
This leads to the following expression for the gene fre- 
quency in any generation derived from the previous 
one: 

k k 

2 q i ( l - 2 q i )  + ~ Sij ~ ql 
ql = j q : i  I q : i , j  

2 1 - ~ S  
l = J  

The case where k = 3 leads to the relatively simple 
formula 

3 

q t ( 1 - 2 q l )  + ~ q i ( 1 - 2 q i )  
q~ = i=l 

2 1 -  Z ( l - 2q i )  2 
i = l  

A comparison of Table 8 given by Li (1951) with 
that obtained by the above expression (Table 9) shows 
that they both give an oscillating approach of the S fre- 
quencies towards equilibrium, but the rate of change is 
not simply a halving of the difference from 1/3 in each 
generation. 

The oscillations are less extreme and equilibrium is 
approached more rapidly than previous formulae 
would indicate, presumably influenced by the assump- 
tion of equal frequencies of all types of pollen despite 
the considerable differences between the frequency of 
$3 compared with Sj and $2. 

Rasmuson (1980) examined the behaviour of a 
locus completely linked to the locus determining game- 
tophytic self-incompatibility. She considered the num- 
bers of S alleles linked to A to be Na and those linked 
to a to be N a where NA + Na = N. 

At equilibrium the frequency ofgenotypes having 

NA(NA-  1) 2NANa 
A a =  

N ( N - 1 )  ' N ( N - 1 )  ' 
,4,4 

and 

N a ( N a -  1) 
d O  = 

N ( N -  1) 

Subsequent consideration of x haplotypes where the 
same S allele is linked to both A and a led to the 
derivation of a formula for the frequency of aa, namely 

x ( x -  l ) q 2 +  2 x ( N a - x )  q + ( N - x )  ( N a - x -  l) 

N ( N -  l) 
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Table 7. Effect of (pollen) immigration of a recessive lethal 

SIAl SIA1 SIAl SIAl SIA2 SIA2 
Genotype 

S2A1 $2A2 S3A1 $3A2 $2A1 $2A2 
S1A2 S1A2 S2AI S2A1 $2A2 S2A2 

S3AI $3A2 S3AI $3A2 $381 $3A2 

Frequency 0 0.05 0 0.05 0 0.28 

0 0.43 0 0.45 0 0.03 

Frequency of A1 in the population with starting conditions 

(1) (2) 

No. ofgenerations 20 20 50 100 

r = 0 s = 1 0.0498 0.316 0.316 0.316 
r = 0.01 s = 1 0.043 0.258 0.173 0.081 
r = 0.05 s = 1 0.031 0.107 0.029 0.012 
r = 0.1 s = 1 0.028 0.061 0.022 0.010 

0 0.29 0 0 0 0.33 (1) 

0 0.02 0 0 0 0.05 (2) 

Table 8. Approach to equilibrium of three self-incompatibility 
alleles under random mating 

Zygotic proportions Gene frequencies 

n SIS2 SIS3 $2S3 SI $2 $3 

Table 9. Approach to equilibrium of three self-incompatibility 
alleles under random mating, without the assumption of equal 
frequency of all pollen types 

Zygotic proportions Gene frequencies 

n S1S 2 SIS 3 8283 S 1 S 2 S 3 

0 0.8000 0.1600 0.0400 0.480 0.420 0.100 
1 0.1000 0.4200 0.4800 0.260 0.290 0.450 1 0.8 0.16 0.04 
2 0.4500 0.2900 0.2600 0.370 0.355 0.275 2 0.2596 0.2981 0.4423 
3 0.2750 0.3550 0.3700 0.3150 0.3225 0.3625 3 0.3517 0.3386 0.3097 
4 0.3625 0.3225 0.3150 4 0.3277 0.3329 0.3394 
5 0.31875 0.33875 0.3425 5 0.3345 0.3337 0.3318 
6 0.340625 0.330625 0.32875 6 0.3331 0.3332 0.3337 
7 0.3297 0.3347 0.3356 7 0.3334 0.3334 0.3332 
8 0.3351 0.3327 0.3322 
9 0.3325 0.3336 0.3339 

10 0.3337 0.3332 0.3331 

0.3333 0.3333 0.3333 0.333 0.333 0.333 

0.48 0.42 0.10 
0.279 0.202 0.519 
0.345 0.331 0.324 
0.330 0.334 0.336 
0.334 0.333 0.333 
0.333 0.334 0.333 

Table 10. Approach to equilibrium of the two linked loci in the absence of selection, for 3 different initial sets of genotypic fre- 
quencies 

Genotypes 

SIAl SIAl SIAl SIAl S1A2 SIA2 $1A2 SIA2 S2A1 S2A1 $2A2 $2A2 
A1 

S2AI $2A2 S3A1 $3A2 S2A1 $2A2 $3A1 $3A2 $3A1 $3A2 S3A1 $3A2 

1) 0.25 0 0.25 0 
2) O.3 0 0.2 0 
3) 0.225 0 0.225 0 

a tequi l ibr iumr  = 0 s = 0 

.1) 0.22222 0 0.22222 0 
2) 0.22475 0 0.22475 0 
3) 0.21429 0 0.21429 0 

with ffequendes o fAl (a  ) 

predicted value 0.91667 

0.125 0 0.125 0 0.25 0 0 0 
0.1875 0 0.625 0 0.25 0 0 0 
0.125 0 0.125 0 0.3 0 0 0 

0.11111 0 0.11111 0 0.3333 0 0 0 
0.10858 0 0.10858 0 0.3333 0 0 0 
0.11905 0 0.11905 0 0.3333 0 0 0 

1) 0.88889 A1Al(aa) = 0.79011 
2) 0.89142 = 0.79463 
3) 0.88095 = 0.77607 

0.875 
0.875 
0.875 

0.88889 
0.89142 
0.88095 
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where q is the frequency of  a in the x haplotypes. 
Figure 1 of  her paper does not seem to correspond to 
the values obtained from this formula as it is shown to 
give an increasing frequency of  aa as the numbers of  
haplotypes having both SiA and Si a increase whilst the 
frequency of  A and a remain constant, whereas the 
formula above gives a declining value for the frequen- 
cy of  aa as would be expected and as is implied in her 
discussion: "An increase in the number  of  S alleles 
which are linked to the favourable A allele is the only 
effective way to decrease the segregation of  aa." 

Though this conclusion is probably true it is not 
possible to predict the equilibrium value of  aa from 
the starting conditions as may be seen in the set of  
results presented in Table 10 where the equilibrium 
value of  a is different for each set of  conditions. 

These cases all involved a population in which 3 S 
alleles are segregating, aa(AlA1 here) is homozygous 
and into which one new haplotype is introduced, 
presumably as pollen with a frequency of  A (A2 here) = 
1/8 as described by Rasmuson but with the A, a (.42,A1) 
genes differently distributed amongst the S genotypes. 
Not  one of  these sets of  conditions gives the value of  
aa (~IRA 0 of  0.91667 which is predicted by Rasmuson's 
formula. She also states that selection against a locus 
closely linked to the self-incompatibility locus is dif- 
ferent from what occurs in loci under random mating. 
The allele towards which selection is directed cannot 
be eliminated. 

Three points need to be reiterated finally. Firstly 
what Rasmuson calls close linkage is in fact complete 
linkage (r = 0); if r :~ 0 (e.g. r = 0.01), it is possible to 
eliminate the allele towards which selection is directed, 
albeit only after a very long time, and for r = 0.1 (a 
value which might well be described as close linkage) 
elimination may be possible in about 100 generations. 
Secondly for the case of  complete linkage a selection 
intensity less than 1 is more effective in lowering the 
gene frequency (Table 11). A selection intensity of  

s = 0.5 reduces the gene frequency more in 2 generations 
than does s = 1 and after 5 generations the frequency of  
a(AO is 0.69 cf. 0.75. This degree of  selection leads to a 
population with a stable frequency of  a(At) of  0.683 
and it is interesting that for s = 0.2 the population 
stabilizes with a frequency of  a(AO =0.672. Thirdly 
relaxation of  selection against aa(AIAl)  does not lead 
to a rapid increase in the frequency of  aa (A i A l). 
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